当前位置: 学院首页 / 学科建设 / 重点学科建设 / 正文 /

贵州省数学重点学科2017-2019建设规划
发布时间:2017-03-21文章来源:bat365在线平台官方网站 浏览次数:

一、前言

学科建设是数学学科工作的关键,科学规划数学学科建设,是促进数学学科可持续发展的需要,更是培育数学学科核心竞争力的现实需求。为加大数学学科建设力度,提升数学学科的科研创新能力与学科建设地位,更好地为区域经济社会发展服务,为培养大批社会主义合格建设者和可靠接班人服务,根据《中共中央关于制定国民经济和社会发展第十三个五年规划的建议》、教育部《全国教育事业“十三五”规划》,以及教育部《关于制定高等学校学科建设“十三五”规划的基本要求》和教育部关于进一步做好学科建设规划的指示精神,结合bat365官网学科发展的需要,特制定贵州省数学重点学科2014-2016建设规划。

二、现状、问题与机遇

(一)基本现状

1. 学科发展历史。bat365官网数学与应用数学本科办学有10余年的办学历史,是bat365官网登录入口一个年轻而又充满生机与活力的专业。在学校的倾心关怀下,加大了数学学科高层次人才引进力度,经过十多年的交叉融合,逐步形成了4个稳定的研究方向:应用动力系统、博弈论及应用、凸几何分析与代数、数值计算及应用,并且取得了丰硕的研究成果。bat365官网数学学科通过长期与统计学、经济学、管理学、环境科学等优势学科相结合,在学科体系、师资力量等多方面形成了鲜明的学科特色与发展优势。

2. 学科方向。长期以来,学校紧紧跟踪学科前沿,经过多年的积累,目前已经形成了以下四个具有一定优势的学科方向:

(1)应用动力系统:微分方程与生态学、生物细胞神经网络、经济系统相结合,研究源于传染病学、生态学、生物细胞神经网络、经济系统中等前沿领域中导出的时滞脉冲微分方程、时滞微分方程、差分方程等系统的动力学行为及其分支问题和分支特性,将微分方程理论应用于生命科学与经济系统中的研究。为保护生态平衡、生物资源管理、国家和地区宏观经济平稳运行提供了科学和定量的依据。并且创新和发展了非线性差分方程,提出并发展了模糊差分方程的解法。

(2)博弈论及应用:博弈论是研究具有斗争或竞争性质现象的数学理论和方法,已经成为经济学的标准分析工具之一,在经济学、交通科学、计算机科学、生物学、国际关系、政治学和其它很多学科都有广泛的应用。理论方面:我们运用非线性分析方法探讨交通博弈、网络博弈等均衡的存在性、稳定性;应用研究方面:一是运用博弈理论对经济建设和社会发展中出现的热点问题进行博弈研究,为各级政府部门的决策提供科学依据; 二是综合运用博弈论、交通分配理论以及计算机经济学对交通出行者的出行行为进行探讨,界定不同类型交通系统的效率损失,探讨交通管理措施对缓解交通拥堵的实施效果,为解决城市交通提供政策建议。

(3)凸几何分析与代数: 凸几何分析与代数学科主要运用微分几何,积分几何,凸分析,偏微分方程和代数学以及组合理论等现代分析工具发展相结合等理论来研究几何以及代数学中一些重要的代数问题及几何现象。运用几何学中的投影、横截以及重构等几何方法, 结合分析和代数中的同调论,Random变换、Fourier变换、卷积,以及偏微分方程的解的唯一性、稳定性理论等方法来刻画代数和几何体的基本不变量之间的关系, 这些不变量之间的关系反应了几何体内在的几何性质,这些内在的几何性质在空间统计学、金属采矿学(探针搜索)、生物科学,医学(肿瘤探测,X光射线,CT扫描)、信息科学等其它学科中都有应用。还运用概率论与数理统计学的知识对随机几何学以及数理生态几何学进行研究,这些都是使凸几何分析与代数在其它学科很重要应用之一,也是几何发展的新方向。另一方面我们还从事代数的传统领域即群、环、域、模等基本域的研究, 把代数与几何以及其他分支学科结合起来, 例如研究代数矩阵论, 组合矩阵论, Hopf代数等,我们与计算机相结合研究计算代数、数学机械化、代数密码学、代数自动机等。为计算机的发展,特别是密码学发展提供了强大的理论支持。

(4)数值计算及应用:在科学研究与工程计算中,存在着大量的非线性优化、方程的求解和特征值计算等问题。数值计算智能算法及应用研究方向旨在借助于现代化的计算工具对这些问题设计出高效的智能算法与数值计算方法,并将其设计的算法应用于一些实际问题中。在智能算法设计的研究中,针对一般非线性约束优化问题,提出一个基于双层迭代的数值计算框架,外层迭代利用修改增广Lagrangian乘子法处理约束条件,内层迭代利用智能算法求解处理后的问题,最后将设计的算法应用到石油生产过程优化问题中。在方程和特征值计算方法的研究中,针对Schrödinger方程特征值计算问题,给出了Wilson元离散及二网格离散方案,得到较小误差的数值计算方法。所设计的数值计算智能算法能在石油、化工、电力、经济、管理等自然科学、社会科学和工程技术中有广泛的应用。

3.学科队伍。本学科团队成员有23人,其中教授有7人,硕士生导师8人,副教授9人,16人具有博士学位。目前团队成员已经形成了4个稳定的学科研究方向,其中应用动力系统研究方向以焦建军教授、张千宏教授和徐昌进教授等为核心的研究团队在贵州喀斯特地区生态环境保护与生物保护动力学方面的研究已经形成区域优势,在国内外有一定的学术影响力。研究成果获得过2013年贵州省科技进步二等奖,2014年贵州省高等学校自然科学优秀成果一等奖。

4.学科平台。bat365官网数学与应用数学专业已有10年办学历史,2004年开始招生数学与应用数学专业本科生;2005年参与获得数量经济学硕士学位授予权;2008年参与贵州省经济系统仿真重点实验室的建设,在bat365官网登录入口第三期与第四期重点学科统计学重点学科建设及统计学一级学科硕士点的精心扶持下,在统计学一级学科硕士点增设的二级学科硕士点生物统计与动力系统在2015年开始招生。

5.学术研究。近3年来学科团队承担和完成国家级、省部级科研课题共计24项,总经费近520万元,其中在研的7项国家自然科学基金经费达260余万元。发表论文126余篇,其中SCI/EI等核心期刊69余篇。出版学术专著1部。获奖5项。本学科对欠发达地区尤其是贵州的经济社会问题的应用数学研究更加深入,具有明显的地域优势。

6.学术交流。近年来,选派多位教师出外访学,多人先后赴北京大学、中央财经大学、南京大学进行研修或交流。在学术交流方面,经常邀请著名数学专家来bat365官网讲学,比如,中国科学数学研究院的陈兰荪教授,华中科技大学的杨晓松教授,浙江师范大学特聘教授李继斌教授,美国德州农工大学(国际SCI期刊主编)Goog Chen 教授等等。本学科的应用动力系统、凸几何分析即代数等领域已在国内外学术界产生了广泛而持续的影响。

(二)存在的问题

学科研究和贵州省的经济社会现实贴近还不够,为贵州区域经济社会的发展提供的智力支撑还不多。学术队伍实力、研究条件、学术成果的档次等方面与一流学科相比存在差距。这些也是该学科建设以后的努力发展方向。

(三)面临的机遇与挑战

现代数学发展已经扩展到原先非传统的、数学处理相对说来不算成熟的化学、生物、经济及社会学领域。同时在新兴的科学领域、高新技术领域包括生命、信息、环境、材料、能源、经济等方面都提出了新的课题,它远远超出了传统应用数学的范围,所以说“高技术本质上是一种数学技术”,数学已兼有科学与技术两种品质,这是其它学科所少有的。学科方向拟结合贵州区域的经济与生态社会的独特数理特征,研究贵州喀斯特地区的光滑与非光滑生物动力学、数理经济学、计算机经济学、交通博弈均衡分配、数值计算方法、智能计算和计算机仿真方法。

三、学科建设总体目标和年度建设计划

1. 建设总体目标:

(1)支撑学校申报数学一级硕士学位授权点,支撑学校申报数量经济学二级学科博士学位授权点。

(2)培养1-2名国家级层次的专家和1-2名博士生导师,培养1-2名学科带头人,培养1-2名省级层次称号的专家。

(3)推出一批高质量的科研成果,搭建学术研究平台,申请并创建1-2个省部级科技创新团队或教学团队,为下一步申报国家级或省级学科研究团队做出前期的学术准备。

2.  主要思路及预期成效:

(1)队伍建设:通过自己培养和引进高层次人才,构建一支以有较高学术水平和较大影响的专家为学科带头人,以副高以上职称、硕士以上学位的中青年骨干教师为主体的学科队伍。在学校第六期重点学科结束时达到教授10人、副教授8人、博士20人,其中博士生导师1-2人,国家级层次的专家1-2人,校级学科带头人3人,校级学术带头人5人,校级学术骨干7人。

(2)平台建设:申报并建设1个省级应用动力系统仿真重点实验室,申报并建设1-2个科研创新团队。

(3)科学研究:力争获得4项国家级课题、6省部级课题,在研经费160万以上,出版专著或教材1-2部,获得省部级以上科研成果奖1-2项,获得1项省级教学成果奖。在核心及以上刊物上发表学术论文不少于50篇,其中被SCI/EI/ISTP收录不少于30篇。在核心期刊发表教改论文不少于4篇。

(4)人才培养:培养硕士研究生10-20名,毕业生质量和水平较高。

3. 年度建设计划:

2017年年度建设目标:

(1)培养核心竞争力。研究方向是学科建设与发展的首要问题和关键环节,具有引领标识的重要作用。我们将详细调研4个方向的国际研究热点,结合财经大学的实际情况且在相应科学积累的基础上,为每个研究方向确定新的突破点,作为核心研究内容。申报1项省部级科研创新人才团队。

(2)学科组成员,力争立项1-2项国家自然科学基金项目,争取获得2-3项省部级科研项目。

(3)发表核心期刊学术论文不少于15篇,其中发表被SCI、EI、ISTP检索的期刊论文8篇。在核心期刊发表教改论文2篇。

(4)力争引进或送培博士研究生3名。

(5)积极参与学术交流,邀请1-2位本领域专家学者到bat365官网做学术交流报告。

2018年年度建设目标:

(1)进一步培养核心竞争力。选择性地引进1-2位高层次双高人才,着力打造1-2个稳定的热点研究方向,力争在国内外形成一定的影响, 申报并立项1个省部级重点实验室,申报1项省部级奖励。

(2)学科组成员,争取国家级项目有新的突破达到3项,争取获得2-3项省部级科研项目。

(3)发表核心期刊学术论文不少于20篇,其中发表被SCI、EI、ISTP检索的期刊论文12篇。在核心期刊发表教改论文2篇。

(4)力争引进或送培博士研究生3名。

(5)积极参与学术交流,邀请1-2位本领域专家学者到bat365官网做学术交流报告,主办1次全国性的学术会议或1次全国性的学术专题研讨会。

2019年年度建设目标:

(1)进一步培养核心竞争力。选择性地引进1-2位高层次双高人才,着力打造1个稳定的热点研究方向,力争在国内外形成一定的影响, 申报1项省部级奖励。

(2)学科组成员,争取申报立项国家自然科学基金项目1-2项,争取获得2-3项省部级科研项目。

(3)发表核心期刊学术论文不少于15篇,其中发表被SCI、EI、ISTP检索的期刊论文10篇。在核心期刊发表教改论文2篇。

(4)力争引进或送培博士研究生2名。

(5)积极参与学术交流,邀请1-2位本领域专家学者到bat365官网做学术交流报告。

四、实施保障

(一)组织保障

成立学科建设领导小组,采取以学科带头人为主、学科建设单位为辅的有机联动机制,实行学科负责人和行政负责人双责任制,学科负责人负责学科发展的规划和具体指标的落实,行政负责人予以制度保障。

(二)制度保障

1. 实行项目首席教授责任制。首席教授即为建设项目负责人,全面负责组织学科建设项目的规划设计和实施。设立项目责任小组,责任小组负责项目规划建设和运行管理等问题的集体决策,小组成员由首席教授和各二级学科带头人组成,首席教授担任责任小组组长,学科带头人在项目首席教授的领导下,负责组织本项目分解建设任务的落实。项目经费预算和预算变更须经责任小组会议集体研究决定。

2.实施动态跟踪管理。在项目建设期间,数学学科将根据各二级学科的任务和目标完成情况实施动态跟踪管理,根据项目建设情况适时调整经费投入。数学学科将建立项目建设过程监督机制,重点实行信息公开制度,对项目建设方案以及项目执行过程中的年度预算、资金执行情况、预算调整等信息适时公开。

(三)经费保障

1. 经费筹措。通过申请政府资助等渠道,多方面筹措学科建设经费,保障学科建设各项工作有序推进。

2. 经费管理。实行建设经费过程调控机制。按照国家在中央财政专项资金管理中“零余额”的要求,学校将实行经费额度控制机制,根据项目实际执行情况和学校要求的经费执行序时进度,对各项目资金额度进行调控。

3. 明确任务重点,实行经费执行预算制。各项目应结合项目长远建设目标,做好年度计划,实现长期目标与近期目标的统一。学科建设项目经费使用须严格按照国家和学校有关规定,各项目负责人须对本项目资金支出的真实性、合法性和效益性负责,严格执行审定的项目预算,确保按规定使用建设资金。